
Passive Network Traffic Analysis: Understanding a Network
Through Passive Monitoring
Kevin Timm,

Network IDS devices use passive network monitoring extensively to detect possible
threats. Through passive monitoring, a security admin can gain a thorough
understanding of the network's topology: what services are available, what operating
systems are in use, and what vulnerabilities may be exposed on the network. Much of
this data can be gathered in an automated, non-intrusive manner through the use of
standard tools, which will be discussed later in this article. While the concepts
presented here are not difficult to understand, the reader should have at least an
intermediate understanding of IP and a base-level familiarity with the operation of
network sniffers.

IP and TCP Headers

Since it is assumed the reader has an intermediate level understanding of the Internet
Protocol suite (IP), we will take only a cursory look at the IP and TCP headers,
highlighting and giving a brief description of the fields of interest. A very detailed
reference to the specific IP protocols is available at in the RFC Sourcebook. In the
sample header below, we are primarily interested in the fields that are highlighted in
blue and red: the blue fields require mostly manual interpretation while the red fields
have tools that automate much of the analysis.

IP Header Format:

TCP Header Format:

From the above headers, a table can be created that details the fields of interest and
the value of that field during analysis. Much of the data needed is only available in the
TCP header options, which means that TCP SYN packets are preferred for optimum
fidelity. However, Even though TCP SYN packets are preferred, UDP and ICMP can be

Page 1

used with reduced fidelity. The following table provides a list of the fields, their
location within the header, whether automated tools exist and what value that field
provides (for example, whether it helps determine topology, host type, or what the
host may be doing).

Field Location Automated Tools Value

TTL IP Header Yes OS & Topology

Fragmentation Flags IP Header Yes OS

IHL IP Header Yes OS

TOS IP Header No OS

IP Identification IP Header No OS & Traffic

Source Port TCP Header No OS & Traffic

Window TCP Header / Options Yes OS

Max Segment Size TCP Header / Options Yes OS

Sack OK TCP Header / Options Yes OS

Nop Flag TCP Header / Options Yes OS

The only tool necessary tool to perform passive analysis is a packet sniffer that has
network access or historical logs. Commonly used sniffers are tcpdump, Snoop and
Ethereal. Ethereal has a nice GUI front end while tcpdump and Snoop are command
line utilities. An explanation of the sniffers use is beyond the scope of this article;
however, a nice Snoop tutorial is available at http://www.var-
log.com/papers.snoop.html. Even though all of the analysis can be done with only the
output of a sniffer, large amounts of data will be difficult to cull through without the
assistance of other specialized tools. These invaluable tools will be discussed through
the course of this article.

As stated previously, passive monitoring can be used to gain a general understanding
of network topology and the services being offered therein. By analyzing packet traces,
a host's logical location can be determined through analysis of the TTL field of the IP
header. Operating systems normally use an initial TTL value of either 32, 64, 128 or
255. This value is decreased incrementally each time the packet passes through a
router. Without going into unnecessary detail, most of the time a host's TTL, as seen in
a trace, will be its base TTL minus the number of hops it is away from the originating
network. There are some exceptions, most notably traceroute; however, traceroute is
easily identified. In the following trace, the example inside network is 10.10.10.X. The
TTL field is highlighted in blue.

09:37:56.045881 10.10.10.3.9082 > 64.154.80.49.80: P [bad tcp cksum
a34f!]
 1560784165:1560785134(969) ack 4104043405 win 8280 (DF)
 (ttl 127, id 39129, len 1009)
10:19:16.695881 170.208.15.77.31386 > 10.10.10.22.6588: S [tcp sum ok]
 1804289383:1804289383(0) win 16384 [tos 0x10]
 (ttl 243, id 63442, len 40)
10:19:16.695881 10.10.10.22.6588 > 170.208.15.77.31386: R [tcp sum ok]
 0:0(0) ack 1804289384 win 0 (DF)

Page 2

 (ttl 64, id 53077, len 40)
11:10:20.895881 10.10.10.5.445 > 68.157.138.20.4640: R
 [tcp sum ok] 0:0(0) ack 2374038867 win 0 (DF)
 (ttl 255, id 0, len 40)
11:10:21.185881 68.157.138.20.4292 > 10.10.10.2.445: S [tcp sum ok]
 2358041082:2358041082(0) win 16384 (DF)
 (ttl 112, id 51954, len 48)
14:29:17.035881 10.10.10.11.80 > 139.223.175.6.2535: R [tcp sum ok]
 0:0(0) ack 3206335729 win 0 (DF)
 (ttl 255, id 0, len 40)
14:29:17.735881 139.223.175.6.2535 > 10.10.10.11.80: S [tcp sum ok]
 3206335728:3206335728(0) win 16384 (DF)
 (ttl 105, id 57821, len 48)

A cursory analysis reveals that our host 10.10.10.3 has a TTL of 127 and is one hop
away from us on the network. Furthermore, internal hosts 10.10.10.22, 10.10.10.5
and 10.10.10.11 both have their TTL set to either 64 or 255, indicating that they are
most likely on the broadcast domain from where the sniffing is taking place. This
topology can be extended to external hosts such as 170.208.15.77 (TTL 243), which
we assume is approximately twelve hops away (base TTL 255 - TTL = 12). The use of
the TTL field to determine internal logical segmentation and layout would be of greater
benefit on larger networks than in our example.

Delving further into sample traces it is easy to use a combination of common Unix
tools such as tcpdump, sort and uniq to determine what services are being offered on
the network and how often they are being accessed. This is easily accomplished by
creating a filter that will look for SYN/ACK packets leaving the protected network.
Similarly filters can be created that sort UDP and ICMP traffic, although traffic direction
and initiation are harder to establish without manual interpretation or payload
analysis.

tcpdump -r 0307\@09-snort.log -n src net 10.10.10 and 'tcp[13] ==18' -
tt |awk '{print $2}' |sort |uniq -c |sort -rn |more

2059 10.10.10.9.http
 206 10.10.10.1.4065
 184 10.10.10.1.h323hostcall
 79 10.10.10.1.2065
 45 10.10.10.1.6065
 13 10.10.10.1.9065
 3 10.10.10.7.http
 1 10.10.10.8.http
 1 10.10.10.5.telnet
 1 10.10.10.12.telnet
 1 10.10.10.11.telnet

From this output it can be determined that HTTP and Telnet are offered by several
hosts on the network. Meanwhile, host 10.10.10.1 appears to be offering services on

Page 3

several non-standard ports.

In a similar fashion, the same logic can be applied to determine if the network has
been probed for services that were not open. For this determination, constructing a
filter to look for TCP reset packets from the protected network would yield results
where someone sent a request to a port that was closed but not filtered. This is an
important distinction: if this data is gathered from hosts that are protected from a
firewall this would then indicate services that the firewall is allowing through but are
not offered. This is a simple way to verify correct implementation of policy.

tcpdump -r 0220\@00-snort.log -n src net 10.10.10 and 'tcp[13] == 4'
08:22:34.200240 10.10.10.20.https > 67.64.67.97.14448: R
360205510:360205510(0) win 0
14:02:45.760240 10.10.10.9.smtp > 218.144.104.100.4284: R
338876750:338876750(0) win 0

In the above trace 10.10.10.20 was probed for https while 10.10.10.9 was probed for
SMTP. The ports were closed for both hosts.

Passive Operating System Identification

Passive Operating System identification relies on the fact that each OS's IP
implementation differs slightly, depending on RFC interpretation. This is most
accurately done by analyzing TCP SYN packets, as these have the greatest number of
unique identifiers. The fields used to make this determination are Initial TTL, Don't
Fragment flag, Initial SYN Packet Size, IP ID, TOS Field, Source Port and TCP Options,
such as Window Size, MSS Size, Nop Option, Window Scaling Option and SackOK
Option.

Previously, excellent papers on this topic have been published by both Lance Spitzner
and Toby Miller. Both of these papers are excellent; however, they present slightly
varied techniques. Currently, there exist two automated tools for doing such analysis:
Siphon (which doesn't appear to have been updated in a while) and p0f (which was
recently updated). Of these two tools, p0f relies mainly on a combination of IP fields
and TCP SYN packet options, while Siphon uses mainly IP-level information such as
TTL and Don't Fragment bit. Automating analysis is quite easy with p0f . P0F even
detects some not so OS-dependent nuances such as Nmap scans, as follows:

/p0f -s 0307\@09-snort.log -f p0f.fp |sort |uniq -c |sort -rn >
outfile-fp

.

2059 24.248.226.68 [1 hops]: RedHat 8.0 (2.4.18.14)
 1086 10.10.10.21: UNKNOWN [16384:64:1460:1:0:1:1:64].
 717 219.60.4.30: UNKNOWN [54020:107:1460:1:0:1:1:52].
 610 61.241.160.195 [21 hops]: Windows 2000 (9)
 7 200.74.27.228 [15 hops]: NMAP scan (distance inaccurate) (1)
 6 38.144.36.16: UNKNOWN [0:243:0:0:-1:0:0:40].
 6 216.232.104.234 [17 hops]: Windows 2000 (9)

Page 4

 5 10.10.10.16: UNKNOWN [3072:64:1460:0:0:0:1:60].
 4 24.249.226.68 [2 hops]: RedHat 8.0 (2.4.18.14)
 3 67.35.14.5: UNKNOWN [65535:109:1414:1:0:1:1:64].
 3 65.30.164.157 [13 hops]: Windows 2000 (9)
 3 63.178.85.140 [18 hops]: Windows NT 5.0 (2)
 3 62.123.112.135 [21 hops]: Windows 2000 (8)
 3 61.145.232.215: UNKNOWN [58944:37:1452:1:2:1:1:52]

It is relatively simple to automate this analysis on raw logs; however, readers should
be aware that it is possible to change the default OS behavior on several operating
systems. With Linux you can change IP behavior by using sysctl or by changing
values in the /proc/sys/net/ipv4 directory. Various options can be set this way,
including default ttl, window scaling, as well as rate limitation, and other OS-specific
operational information.

There is another specific option that is controlled by sysctl (ip_local_port_range) that
helps to identify various Linux hosts; this option requires manual interpretation. For
example, on a 2.4.18-14 Kernel, it is set between 32,768 and 61,000, whereas on a
2.4.7-10 Kernel, it is set to a value between 1024 and 4999. An excellent resource for
understanding what values can be tuned using sysctl is available at
http://www.linuxdocs.org/HOWTOs/Adv-Routing-HOWTO-12.html.

Analyzing Packet Payloads

To understand more than just what applications are offering services or what operating
systems are present on the network, packet payloads need to be analyzed. This can be
a tedious task to automate; fortunately ngrep makes this chore much easier. ngrep
can do regular expression-based analysis of network traffic. While this functionally
may not seem to differ much from the traditional IDS, ngrep offers a quick, powerful
interface to network level data with added flexibility. ngrep can be used for further
examination of network traffic by helping to identify the types of services available on
a network and if they are potentially vulnerable. ngrep is syntactically very similar to
tcpdump. A simple example of what can be done would be to use ngrep to parse
through previous acquired logs for specific information such as identifying which types
of Web servers are available on the network.

ngrep -qt -I 0220\@00-snort.log -s 200 -i "200 OK" src port 80 |more
input: 0220@00-snort.log

T 2003/02/20 01:45:15.150240 10.10.10.17:80 -> 211.137.71.1:3774 [A]
 HTTP/1.1 200 OK..Server: Apache/1.3.12 (Unix) (Red Hat/Linux)
mod_ssl/2.6.6 OpenSSL/0.9.5a PHP/4.0.4pl1 mod_perl/1.24' ..Date:

T 2003/02/20 01:45:19.320240 10.10.10.17:80 -> 211.137.71.1:3777 [A]
 HTTP/1.1 200 OK..Server: Apache/1.3.12 (Unix) (Red Hat/Linux)
mod_ssl/2.6.6 OpenSSL/0.9.5a PHP/4.0.4pl1 mod_perl/1.24' ..Date:

T 2003/02/20 01:45:20.360240 10.10.10.17:80 -> 211.137.71.1:3784 [A]
 HTTP/1.1 200 OK..Server: Apache/1.3.12 (Unix) (Red Hat/Linux)
mod_ssl/2.6.6 OpenSSL/0.9.5a PHP/4.0.4pl1 mod_perl/1.24' ..Date:

Page 5

Once again, this could be sorted through the use of Unix commands such as awk, sort
and uniq to provide an output as such

root@snort Feb_20]# ngrep -qt -I 0220\@00-snort.log -s 200 -i "200
OK" src port 80 |grep HTTP |awk '{print $4}' |sort | uniq -c |sort -
rn
 422 Apache/1.3.27
 397 Netscape-Enterprise/3.6
 370 Apache/1.3.12
 301 Microsoft-IIS/5.0

ngrep also allows a certain amount of packets to be displayed after each match. This is
useful for determining if a probed host may have been vulnerable to an attack. To
illustrate this, we will use a Nimda trace, since they are so prevalent and well
understood. We must first establish that the network has been probed:

ngrep -qt -I 0313\@23-snort.log "cmd.exe" port 80 |wc -l
 2356

From there, the use of the "-A 2" flag will catch the following two packets (Ack and the
r response) and then a simple grep looking for a "200 OK" response code should
determine if in fact a vulnerable host existed.

ngrep -qt -I 0313\@23-snort.log "cmd.exe" port 80 -A 2 |grep "200
OK"
[root@snort Mar_13]#

No vulnerable hosts. Great!!!

Raw Sockets

When examining traffic in this manner it is essential to have a basic understanding of
how most IP stacks work and what is considered normal traffic and what is not.
Understanding the ability of raw sockets and how the use of these could impact traffic
is key. The normal socket API handles most of the details about interface selection,
session establishment, port selection, Sequence & Ack numbers, flags set, TTL values,
options, and more. The only way to easily manipulate these is through the use of
sysctl or sysctl-like operating system functions, which can control a few of these
options, or through the use of a tool that can craft packets using the raw socket API.

The raw sockets API allows for manipulation of essentially any header field; however,
to access these requires some network programming. Libraries such as Libnet have
made this easier and other tools such as hping require no programming. With raw
socket packet creation, all header fields will need to be filled in by the program; this
will most likely create inconsistencies compared to packets generated using the
standard sockets API. There are circumstances, though, where only raw sockets can be
used to intentionally create certain types of packets. Using Raw sockets is powerful;
however, it is much more difficult to maintain a session than with traditional sockets

Page 6

API because the normal operating system responses must often be suppressed (since
the packets will seem unsolicited to the Operating System kernel) and the programmer
must have some way to use the response from the one packet to create further
session related packets. This somewhat limits the use of raw sockets.

That said, understanding the abilities of raw sockets and what can easily be
accomplished with them (or not) is essential to understanding the legitimacy of certain
traffic. Armed with this knowledge, this final trace is a good example of a crafted
packet becoming a part of the stream. The final "reset" packet is most likely crafted.

10:01:02.323906 10.10.10.123.39442 > 172.16.61.162.ftp: S [tcp sum
ok] 2147534086:2147534086(0) win 8192 <mss 524,nop,wscale
0,nop,nop,timestamp 2774130191 0> (ttl 58, id 13436, len 60)
10:01:02.324153 172.16.61.162.ftp > 10.10.10.123.39442: S [tcp sum
ok] 1226704774:1226704774(0) ack 2147534087 win 4096 <mss 1024>
(ttl 255, id 59526, len 44)
10:01:02.360296 10.10.10.123.39442 > 172.16.61.162.ftp: . [tcp sum
ok] 1:1(0) ack 1 win 8192 (ttl 58, id 13437, len 40)
10:01:02.360501 172.16.61.162.ftp > 10.10.10.123.39442: P [tcp sum
ok] 1:4(3) ack 1 win 4096 (ttl 255, id 59555, len 43)
10:01:02.404393 10.10.10.123.39442 > 172.16.61.162.ftp: R [tcp sum
ok] 2147534087:2147534087(0) win 0 (ttl 56, id 61581, len 40)

Looking only at the TTL and IP id section of the packets from the host that initiated the
session, this doesn't appear to be the same host. Most likely, the final packet was
solicited from a network security device somewhere along the line and that device
spoofed the IP intentionally to tear down the session with a "reset".

 (ttl 58, id 13436, len 60)
 (ttl 58, id 13437, len 40)
 (ttl 56, id 61581, len 40)

Conclusion

There is a wealth of data available from network traffic that can aid in understanding
the network, its devices, services and vulnerabilities. Some analysis of this data can be
automated through simple scripting. This data can be used for determining how well
an access policy is implemented and if vulnerabilities exist on the network. Becoming
aware of these methods will assist in accurate analysis of network traces as well as
understanding the network itself.

Privacy Statement
Copyright 2005, SecurityFocus

Page 7

